Responsabile: 
Daniele Zamperini 
O.M. Roma 19738 -
O. d. G. Lazio e Molise 073422  
daniele.zamperini@gmail.com
 
 
I Principi di questo sito 
Ordine_medici_padova.gif (3418 byte)
Patrocinato da O.M. della Provincia di Padova
Scienza e Professione
Portale Telematico di informazione scientifica e professionale

Noi aderiamo ai principi HONcode.Verify here  .

Medicina, Biologia, Psicologia, Normativa e Scienze Varie: tutto cio' che fa cultura - Sito Gratuito - Gestore Daniele Zamperini - P.IVA: 01743690586

Modules
· Home
· Archivio Generale
· Ultimi Articoli per Argomento
· Utilità scaricabili
· FAQ - Cosa faccio se...?
· Cerca in Archivio
· Archivio Cronologico
· Web Links
· Pannello utente
· Amministrazione


Who's Online
In questo momento ci sono, 16 Visitatori(e) e 0 Utenti(e) nel sito.

Vuoi accedere ai servizi del sito Scienza E Professione? Registrati Qui


Login
Nickname

Password

Se vuoi diventare un utente del sito puoi iscriverti Cliccando Qui. L'iscrizione permetterą di accedere ai servizi del sito.


 
Intelligenza artificiale, diagnostica di precisione: speranze e realtà
Pubblicato da dzamperini in data 07/03/2021 00:00
Opinioni extraprofessionali




 La medicina di precisione, mediante le tecniche di machine learning della intelligenza artificiale, analizza i cosiddetti big data per migliorare le capacità diagnostiche e la predittività di risposta alla terapia. 


I medici dei pattern

In ambito diagnostico l’approccio algoritmico può supportare soprattutto quelli che E. Topol definisce medici dei pattern [1] , cioè i professionisti che basano la loro attività sull’interpretazione di immagini digitali, radiologiche, retiniche, istologiche, oculistiche, dermatologiche, endoscopiche o provenienti da vari dispositivi. I sistemi di machine learning elaborano, con grande velocità e in autonomia, enormi dataset di immagini e consentono il riconoscimento di schemi divergenti dai normali, ad esempio alterazioni di densità, asimmetrie, irregolarità, ecc, non percettibili con i sistemi diagnostici tradizionali e che gli stessi esperti umani spesso non riescono ad evidenziare [2]. 

Uno degli ambiti di studio dei sistemi di IA è lo screening mammografico. La fisiologica densità radiologica mammaria può simulare/mascherare quella tumorale, sono pertanto possibili falsi positivi e falsi negativi. Ciò ha sviluppato un grande interesse per la realizzazione di sistemi di IA in grado di migliorare le performance diagnostiche dei radiologi [3]. Un esempio è quello sviluppato da Google che, secondo uno studio pubblicato su Nature, sarebbe in grado di ridurre i falsi positivi del 5,7% e dell’1,2% e i falsi negativi del 9,4% e 2,7%, utilizzando rispettivamente database statunitensi e britannici. Il sistema di IA ha fornito performance superiori sia a quelle storiche di referti forniti in precedenza sugli stessi database, sia a quelle di 6 radiologi che hanno interpretato 500 immagini radiologiche selezionate casualmente in uno studio controllato [4]. 

Un editoriale di commento mette peraltro in guardia da possibili entusiasmi: il mondo reale è più complesso di quello “ideale e irreale” della ricerca [5]. Ad esempio, nello studio, la maggior parte delle immagini sono state realizzate dalla stessa macchina, non si conoscono i risultati che si sarebbero potuti ottenere con altri apparecchi per le mammografie. Nello studio infine non sono ben definite le caratteristiche della popolazione, tranne l’età, indispensabili per la generalizzabilità e l’applicabilità della tecnologia.
In generale, le grandi speranze nella diagnostica computer assistita del tumore mammario, sollevate da studi sperimentali e dalla disponibilità di grandi database per l’addestramento degli algoritmi di ML, non sono state confermate da studi nel “mondo reale” [6]. 
In particolare è stato rilevato un peggioramento della sensibilità, cioè della capacità dei radiologici di evidenziare la presenza della neoplasia, con aumento dei falsi negativi, senza peraltro migliorare la specificità, cioè la capacità degli specialisti di escludere la presenza della neoplasia, e quindi incrementando i falsi positivi. 

Multinazionali come Google, IBM, Microsoft e Facebook, università e centri di ricerca, pubblici e privati, nazionali e internazionali, sono fortemente presenti nel settore, attirate dalle potenzialità di queste tecnologie. Peraltro, i trial clinici randomizzati (RCT), gli studi metodologicamente più validi, nell’ambito della IA sono rari, se non interamente assenti. Se è vero che anche gli strumenti diagnostici tradizionali non sono in genere sottoposti a studi rigorosi, il loro utilizzo è di semplice supporto per i medici, ai quali spetta la decisione finale. Nel caso della IA il sistema fornisce insieme informazioni ma anche consigli operativi [7], con conseguenze potenzialmente pericolose per i pazienti. 

Per definire il ruolo reale da assegnare ai sistemi di IA nella diagnostica sono sicuramente necessari ulteriori studi, su grandi numeri e in contesti di pratica [8]. 

Riflessioni conclusive

La MP, che si propone di utilizzare i big data di varia provenienza per analizzare, mediante sistemi di IA, lo stato di ciascun individuo a scopi predittivi, diagnostici e terapeutici, rappresenta una novità in grado di determinare grandi cambiamenti a livello sperimentale e clinico, ad esempio di ridurre sprechi e rischi iatrogeni. Le grandi aspettative e la propensione verso l’accettazione acritica dell’innovazione in quanto tale (Il cosiddetto pro-innovation bias) rischiano peraltro di sottovalutare i rischi relativi ad una accettazione delle tecnologie non motivata da prove certe. E’ quindi indispensabile un attento monitoraggio dei sistemi decisionali, mediante adeguati finanziamenti, per valutarne le performance e aggiornare i dati di input in funzione dell’evoluzione delle conoscenze scientifiche. L’enorme quantità di dati richiede, ancora più che in passato, uno sforzo interpretativo enorme, che i calcolatori non sono (per ora?) in grado di svolgere autonomamente. 


Giampaolo Collecchia e Riccardo De Gobbi

Ulteriori approfondimenti in successivi articoli


Bibliografia

1) Topol E. Deep Medicine: how Artificial Intelligence Can Make Healthcare Human Again, 2019
2) Collecchia G, De Gobbi R. Intelligenza artificiale e medicina digitale: una guida critica. Roma: Il Pensiero Scientifico ed., 2020
3) Neri E., de Souza, N., Brady, A. et al. What the radiologist should know about artificial intelligence-an ESR white paper. Insights Imaging 10, 44 (2019) doi:10.1186/s13244-019-0738-).
4) McKinney SM et al. International evaluation of an AI system for breast cancer screening. Nature 2020; 577: 89-94
5) Pisano ED. AI shows promise for breast cancer screening. Nature 2020; 577: 35-36.
6) Lehman CD et al. JAMA Intern Med 2015; 175: 1828-1837
7) Angus DC. Randomized clinical trials of artificial intelligence. JAMA 2020; 323(11):1043-1045. doi:10.1001/jama.2020.1039 
8) Wilkinson JW et al. Time to reality check the promise of machine learning-powered precision medicine.Lancet Digital Health 2020. https://doi.org/10.1016/52589-7500(20)30200-4

 
Links Correlati
· Inoltre Opinioni extraprofessionali
· News by dzamperini


Articolo più letto relativo a Opinioni extraprofessionali:
Criticita' procedurali e tecniche sulla Ricetta Elettronica



Valuta Articolo
Punteggio Medio: 0
Voti: 0

Per favore, prenditi qualche secondo e vota questo articolo:

Eccellente
Molto buono
Buono
Nella media
Pessimo



Opzioni

 Pagina Stampabile Pagina Stampabile



Argomenti Associati

Scienze Varie

Sito gestito e diretto da Daniele Zamperini, Roma, Medico e Giornalista-Pubblicista - Ultima modifica strutturale della pagina: 30/09/2012 - I singoli articoli riportano la data della loro pubblicazione
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2005 by me.
You can syndicate our news using the file backend.php or ultramode.txt
PHP-Nuke Copyright © 2005 by Francisco Burzi. This is free software, and you may redistribute it under the GPL. PHP-Nuke comes with absolutely no warranty, for details, see the license.
Generazione pagina: 0.58 Secondi