Responsabile: 
Daniele Zamperini 
O.M. Roma 19738 -
O. d. G. Lazio e Molise 073422  
daniele.zamperini@gmail.com
 
 
I Principi di questo sito 
Ordine_medici_padova.gif (3418 byte)
Patrocinato da O.M. della Provincia di Padova
Scienza e Professione
Portale Telematico di informazione scientifica e professionale

Noi aderiamo ai principi HONcode.Verify here  .

Medicina, Biologia, Psicologia, Normativa e Scienze Varie: tutto cio' che fa cultura - Sito Gratuito - Gestore Daniele Zamperini - P.IVA: 01743690586

Modules
· Home
· Archivio Generale
· Ultimi Articoli per Argomento
· Utilità scaricabili
· FAQ - Cosa faccio se...?
· Cerca in Archivio
· Archivio Cronologico
· Web Links
· Pannello utente
· Amministrazione


Who's Online
In questo momento ci sono, 42 Visitatori(e) e 0 Utenti(e) nel sito.

Vuoi accedere ai servizi del sito Scienza E Professione? Registrati Qui


Login
Nickname

Password

Se vuoi diventare un utente del sito puoi iscriverti Cliccando Qui. L'iscrizione permetterą di accedere ai servizi del sito.


 
Fake News e Persuasione Occulta: riconoscerle, evitarle (2° Parte)
Pubblicato da dzamperini in data 17/07/2021 00:00
Pensieri e opinioni professionali




Come EWE classifica le Emozioni
EWE, acronimo di Emotion Word Embedding, è un insieme di algoritmi in grado di identificare il contenuto emozionale di molteplici espressioni linguistiche, che vengono classificate secondo le sei emozioni fondamentali proposte da Paul Ekman(1): rabbia, disgusto, paura, gioia, tristezza, sorpresa.


Secondo lo psicologo Paul Ekman le emozioni umane possono essere ricondotte a sei fondamentali stati d’animo Gioia, Tristezza, Paura, Rabbia, Sorpresa e Disgusto. I molteplici, complessi stati d’animo che ogni essere umano esperimenta nella propria vita(2) potrebbero essere ricondotti a queste sei emozioni fondamentali: as esempio la “noia” sarebbe un insieme di tristezza e disgusto,la “invidia” di rabbia e tristezza ecc.
Molti ricercatori hanno criticato questa classificazione, ma per le finalità che si propongono I “grandi fratelli del web” la classificazione di Elkman, purtroppo, funziona…

EWE fu sviluppato da Ameeta Agrawal(3,4) partendo da numerosissimi documenti prelevati dal web ed analizzati da reti neurali, supervisionate da esperti informatici ,che classificavano le varie espressioni linguistiche sia dal punto di vista qualitativo, inserendole nella griglia delle sei emozioni fondamentali, sia da quello quantitativo, associando ad ogni espressione linguistica un peso ovvero un grado di emozione. Inutile sottolineare come queste operazioni, apparentemente semplici, richiedano in realtà grande familiarità con strumenti matematici raffinati e complessi quali il calcolo vettoriale.

Word2vec e la Interpretazione del contesto
I dispositivi di intelligenza artificiale hanno molti pregi ma un grave difetto: non possiedono Il buon senso di cui è dotato ogni essere umano. Ad esempio una frase un po' elaborata quale:"Iniziò a parlare...quale ottima occasione per stare zitto!!!" è chiaramente una proposizione ironica che con una certa finezza esprime una valutazione decisamente negativa sull'oratore.
Una semplice analisi verbale effettuata dagli algoritmi utilizzati nel decennio scorso non troverà alcuna espressione chiaramente negativa e potrà addirittura individuare nel sintagma “ottima occasione” un indicatore di apprezzamento. Tale handicap dei sistemi di intelligenza artificiale è stato in larga parte superato con la creazione Word2vec, che nacque grazie alle intuizioni di Tomas Mikolov(5) di Google.

Word2vec si avvale in particolare di due importanti algoritmi: CBOW, che prevede la parola a partire dal contesto ovvero dalle parole precedenti, e Skip-gram che partendo da parole chiave esamina i diversi contesti nei quali la parola chiave si può situare arrivando successivamente a prevedere le espressioni linguistiche successive. Wod2vec ha consentito un importante salto di qualità nell'analisi automatica da parte delle reti neurali di milioni di testi del web. Anche con questi algoritmi, ovviamente, si debbono utilizzare strumenti matematici di grande complessità quali il calcolo combinatorio, inferenze statistiche, valutazioni probabilistiche, ecc.

EWE e gli algoritmi analoghi classificano le emozioni, Word2vec e gli algoritmi analoghi effettuano analisi del contenuto linguistico dei testi. Qualcuno pensò di integrare i due approcci e fece “ bingo”!!! In effetti se i due piani di classificazione vengono integrati e sottoposti ad ulteriori supervisioni critiche la potenza del sistema analitico aumenta considerevolmente.
Ma non è sufficiente: nella foresta del web e dei social vengono analizzate sia le notizie che i commenti alle notizie: notizie e commenti vengono sottoposti ad una analisi multivariata in cui ogni fonte di informazione utile viene estratta,registrata, catalogata, e messa in relazione con le altre fonti effettuando una valutazione quantitativa, qualitativa e comparativa…

I “Like”, questi insidiosi seduttori
Il like, ovvero “mi piace” o, per esteso, “sono d'accordo”, è un commento spontaneo quanto mai diffuso nei media. Cosa si potrebbe dedurre da un semplice like? Apparentemente nulla o comunque qualcosa di poco conto. ..
Nulla di più errato: dall'insieme dei “like” espressi è possibile estrarre profili psicologici affidabili e notizie sufficientemente precise sugli orientamenti ideologici, politici e religiosi di chi scrive.
Di converso chi si muove nella legalità ed ha a cuore i diritti delle persone, come il gruppo di Luca de Alfaro, dall'analisi della diffusione dei like può individuare con una precisione attorno al 99% le fake news(6,7),e talora anche gli obiettivi delle organizzazioni occulte che progettano simili operazioni…


Nella prossima pillola : Le foto e le immagini Fake, la Topologia e Velocità di Propagazione delle “fake news” e la Guida finale per i comuni, indifesi utenti del Web…



Riccardo De Gobbi e Giampaolo Collecchia


Bibliografia

1) Ekman P. Friesen W: Constants across cultures in the face and emotion. J Pers Soc Psychol. 1971 Feb;17(2):124-9

2)Tiffany Watt Smith: The book of human emotion Profile Books UK 2015 https://profilebooks.com/

3)Ameeta Agrawal, Aijun An et Al.: Learning Emotion-enriched Word Representations http://creativecommons.org/licenses/by/4.0

4) Ameeta Agrawal, Aijun An: Unsupervised Emotion Detection from Text using Semantic and Syntactic Relations

5) A Beginner's Guide to Word2Vec and Neural Word Embeddings. https://wiki.pathmind.com/word2vec

6)Tacchini E,Ballarin G,de Alfaro Luca: Some Like it Hoax.Automated Fake News Detection in Social Networks. https://www.researchgate.net/publication/316471370_Some_Like_it_Hoax_Automated_Fake_News_Detection_in_Social_Networks/link/5a43af9ea6fdcce197189db3/download

7) Picazo Almira Josè: Le fake news e la loro formulazione matematica RBA Edit. Milano 2020


Per approfondire:
Collecchia G. De Gobbi R.: Intelligenza Artificiale e Medicina Digitale. Una guida critica. Il Pensiero Scientifico Ed. Roma 2020
http://pensiero.it/catalogo/libri/pubblico/intelligenza-artificiale-e-medicina-digitale

 
Links Correlati
· Inoltre Pensieri e opinioni professionali
· News by dzamperini


Articolo più letto relativo a Pensieri e opinioni professionali:
La scelta di una Linea guida in Medicina generale



Valuta Articolo
Punteggio Medio: 0
Voti: 0

Per favore, prenditi qualche secondo e vota questo articolo:

Eccellente
Molto buono
Buono
Nella media
Pessimo



Opzioni

 Pagina Stampabile Pagina Stampabile



Argomenti Associati

Medicina Clinica

Sito gestito e diretto da Daniele Zamperini, Roma, Medico e Giornalista-Pubblicista - Ultima modifica strutturale della pagina: 30/09/2012 - I singoli articoli riportano la data della loro pubblicazione
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2005 by me.
You can syndicate our news using the file backend.php or ultramode.txt
PHP-Nuke Copyright © 2005 by Francisco Burzi. This is free software, and you may redistribute it under the GPL. PHP-Nuke comes with absolutely no warranty, for details, see the license.
Generazione pagina: 0.57 Secondi